Design and simulation of a poly(vinyl alcohol)-bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis.

نویسندگان

  • H Mohammadi
  • D Boughner
  • L E Millon
  • W K Wan
چکیده

In this study, a polymeric aortic heart valve made of poly(vinyl alcohol) (PVA)-bacterial cellulose (BC) nanocomposite is simulated and designed using a hyperelastic non-linear anisotropic material model. A novel nanocomposite biomaterial combination of 15 wt % PVA and 0.5 wt % BC is developed in this study. The mechanical properties of the synthesized PVA-BC are similar to those of the porcine heart valve in both the principal directions. To design the geometry of the leaflets an advance surfacing technique is employed. A Galerkin-based non-linear finite element method is applied to analyse the mechanical behaviour of the leaflet in the closing and opening phases under physiological conditions. The model used in this study can be implemented in mechanical models for any soft tissues such as articular cartilage, tendon, and ligament.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compression properties of polyvinyl alcohol--bacterial cellulose nanocomposite.

Despite the established use of total joint replacement for the treatment of advanced degeneration of articular cartilage, component loosening due to wear and osteolysis limits the lifespan of these joint prostheses. In the present study, nanocomposites consisting of poly(vinyl alcohol) (PVA) and bacterial cellulose (BC) nanofibers were investigated as possible improved cartilage replacement mat...

متن کامل

Preparation and Characterization (Mechanical and Water Absorption Properties) of CMC/PVA/Clay Nanocomposite Films

The aim of this study was to produce Carboxy Methyl Cellulose (CMC) and Poly Vinyl Alcohol (PVA) films and to enhance their properties by reinforcing them with nanoclay particles. Thus, nanocomposite films were prepared with blending of CMC and PVA, as a matrix and several filler loadings of nanoclay particles. The various formulations of nanocomposite films obtained with casting m...

متن کامل

Hydrothermal Synthesis of Nickel Hydroxide Nanostructures and Flame Retardant Poly Vinyl Alcohol and Cellulose Acetate Nanocomposites

Nickel hydroxide nanostructures were synthesized by a hydrothermal reaction. The effect of different precursors and surfactants on the morphology of nickel hydroxide nanostructures was investigated. Nanostructures were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy and Fourier transform infrared  spectroscopy. The influence of Ni(OH)2 nano...

متن کامل

Preparation and Characterization of Aligned and Random Nanofibrous Nanocomposite Scaffolds of Poly (Vinyl Alcohol), Poly (e-Caprolactone) and Nanohydroxyapatite

Nanofibrous scaffolds produced by electrospinning have attracted much attention, recently. Aligned and random nanofibrous scaffolds of poly (vinyl alcohol) (PVA), poly (ε-caprolactone) (PCL) and nanohydroxyapatite  (nHA) were fabricated by electrospinning method in this study. The composite nanofibrous scaffolds were subjected to detailed analysis. Morphological investigations revealed that the...

متن کامل

Role of Nano-Sized TiO2 on Mechanical and Thermal Behavior of Starch/Poly (vinyl alcohol) Blend Films

A novel Starch/Poly (vinyl alcohol)/nano-Titanium dioxide (ST/PVA/nano-TiO2) biodegradable nanocomposite film was prepared by homogeneously dispersed TiO2 nanoparticles in different ratios of starch/PVA-based materials, via a solution casting method. Glycerol was used as plasticizer. The mechanical and thermal properties of films were studied using tensile and perforation strength tests and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine

دوره 223 6  شماره 

صفحات  -

تاریخ انتشار 2009